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Abstract

This paper identi�es and estimates the e�ects of student-level social spillovers on standardized test

performance in New York City (NYC) elementary schools. We leverage student demographic data

to construct within-classroom social networks based on shared student characteristics, such as a

gender or ethnicity. Rather than aggregate shared characteristics into a single network matrix,

we specify additively separate network matrices for each shared characteristic and estimate city-

wide peer e�ects for each one. Conditional on being in the same classroom, we �nd that the

most important student peer e�ects are shared ethnicity, gender, and primary language spoken

at home. We show that altering classroom composition changes the impact of these networks.

Particularly, low ethnic diversity is correlated with low impact for shared ethnicity. We discuss

identi�cation of the model and its implications for within- and between-group test performance

gaps along several demographic traits.
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1 Introduction

Birds of a feather �ock together. This concept is called homophily, and we see its e�ects

in schools, work, and social circles - both personally and in popular culture. The e�ects of

homophily can be quite stark. For example, compared to their male counterparts, female

investors are three times as likely to invest in companies with a female CEO.1 Homophily

may arise if external similarities correlate with shared cultural experiences, making potential

relationships less costly through improved information �ows and e�cient communication.2

On the other hand, homophily could simply be the result of taste, which may correlate with

prejudice or fear of the other.3 This paper asks two questions related to homophily in elemen-

tary school classroom in New York City. First, which demographic characteristics (if any) are

important for social spillovers in standardized test performance, and how do they compare

in sign and magnitude? For example, is shared gender more in�uential than shared neigh-

borhood of residence? Second, what are the e�ects of such homophily-induced spillovers on

the distribution of student academic performance within and between demographic groups?

Speci�cally, how do these spillovers a�ect existing achievement gaps within the classroom?

Understanding how homophily works, and which networks are important in which con-

texts, is important for education policymakers wishing to harness peer e�ects (or, at least, to

better understand them). The promise of peer e�ects is twofold: a near costless improvement

to educational outcomes through optimal assignment of students to classrooms and a �social

multiplier e�ect� for exogenous policy interventions and investments.4 A major challenge to

policy intervention is that students sort into groups within the classroom, and this sorting

behavior may bring unintended consequences when combined with an intervention.5 This

1Abramson et al. (2019) discusses gender diversity in venture capital, and its implications.
2See Hegde and Tumlinson (2014) for a model of this in venture capital �rms. They discuss how ethnic

homophily plays into both selection of which companies to invest in, as well as in�uence after investment.
3See Leszczensky and Pink (2019) for a discussion of how di�erent taste preferences for homophily (high

and low identi�ers) interact to form groups of varying levels of homogeneity.
4Bennett and Bergman (2018) provide a nice example of social multipliers in action using an attendance

intervention. A good survey of the related theory can be found in Epple and Romano (2011).
5See Carrell et al. (2013) for an example. The authors conducted an experiment in which they manipulated

peer groups such that it was expected to help the lowest performing students. The target group of students
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paper sheds light on this complication, by identifying and empirically testing for character-

istics which are important for within-classroom spillovers and then by exploring how these

e�ects change under di�ering classroom compositions.

To explore these e�ects, we use student-level administrative data from NYC, where we

partition the universe of elementary school students into classrooms. Within each classroom,

we consider seven demographic partitions (gender, ethnicity, neighborhood, bus stop, bus

route, language spoken at home, and country of birth.)6 Within each demographic partition,

students are divided into demographic groups corresponding to the possible categories within

each partition. For example, in any classroom there may be two gender groups (boys and

girls) and four ethnicity groups (Black, White, Hispanic, and Asian/Other), and each student

belongs to one of the two gender groups and one of the four ethnicity groups. We leverage

variability in the size and composition of demographic groups in each classroom to identify

peer e�ects through each demographic partition. That is, we simultaneous estimate a gender

peer e�ect, an ethnicity peer e�ect, a neighborhood peer e�ect, etc. for elementary school

students in NYC. A number of papers have studied homophily, but typically only a few

demographic characteristics (e.g., gender and ethnicity) are considered individually. We

later partition the data based on ethnic diversity in the classroom and re-estimate our model

in order to explore how classroom contribution changes the relative e�ects. Is the ethnicity

network more or less important in an ethnically diverse classroom than a nearly homogeneous

classroom? Does the in�uence of other networks which may correlate with ethnicity vary with

classroom diversity?

The main source of identi�cation for our model is the variation in partition structures

across demographic partitions.7 In our model, groups of one partition partially overlap

groups of the others when each partition uniquely divides students. This creates partially

ended up being hurt by the experiment because the way peer groups formed changed when the set of potential
peers changed.

6For clarity of exposition, we refer to all partitions as demographic partitions, despite a few of them being
based on geography.

7A partition structure indicates the way a demographic partition divides students in a classroom. Variation
in partition structures exist when partitions are unique, or only partially overlapping.
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or indirectly connected groups of students,8 which generates exclusion restrictions similar

to those by �transitive triads� (Bramoullé et al., 2009) and �partially overlapping groups�

(Laschever, 2013; De Giorgi et al., 2010) in the network literature. In addition to these

exclusion restrictions, variation in group sizes also helps identi�cation of our model. Lee

(2007) considers classroom interaction and shows that identi�cation is possible based on

classroom size variation. The same identi�cation mechanism works for our model, but our

model partitions classmates further into multiple demographic groups, which creates much

richer variation in group sizes. We discuss how these variations yield identi�cation using

simple examples and existing identi�cation results from the literature. In doing so, we address

identi�cation challenges common to the peer e�ects literature, such as re�ection, selection,

and correlated e�ects.

Empirically, our model �nds the strongest networks are shared ethnicity, gender, and

primary language spoken at home. Ethnicity groups are most important for mathematics

test scores, and gender groups are most important for reading test scores. To our knowledge,

this is the �rst paper to explore bus spillovers in the classroom, but we do not �nd them to be

an important factor in classroom performance. In general, peer e�ects based on homophily

appear to be stronger in mathematics than reading test scores. We explore di�erent classroom

compositions to understand how network in�uence of demographic partitions change when

peer group composition varies. We provide evidence that low ethnic diversity leads to lower

relevance for the ethnicity network.

In our model, group interaction along multiple demographic partitions produces very

general and interesting reduced-form dynamics compared to existing models. First, positive

within-group interaction may decrease existing within-classroom performance gaps between

students belonging to the same groups (e.g. boy or girl peer groups) by lifting low performing

students more than high performing students. This is a well-known e�ect of social interac-

8Partially connected students refer to those who share some but not all demographic characteristics,
and indirectly connected students refer to those who don't share any demographic characteristics but have
common classmates who share some characteristics with them.
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tions, and is a common feature of group interaction models. A second and somewhat unique

feature of our partitioned group interaction model is that peer e�ects may increase gaps be-

tween students in di�erent demographic groups by limiting direct classroom spillovers across

group boundaries. That is, when boys interact more with boys, and girls with girls, spillovers

are stronger within demographic groups than between them - potentially exacerbating any

existing gender performance gap. This is an important implication of our model: classroom

exposure to other demographic groups is important, but facilitating cross-group interaction

may be equally important to close cross-group performance gaps.

To further motivate our model, the next section includes a brief literature review of

social network studies in education. Section 3 details the data used in this paper and how

we construct our sample. Section 4 introduces the model and discusses identi�cation and

estimation. Section 5 presents the main empirical results, and Section 6 explores how these

e�ects change as the classroom composition varies. In particular, we explore how the ethnicity

network's impact changes as classroom diversity varies. Section 7 concludes. Appendices

include technical details about the identi�cation of our model, simulations results examining

the �nite sample performance of our proposed model, and some robustness checks using

alternative speci�cations.

2 Social Networks in Education

Despite their potential importance, econometric estimation of peer e�ects in education re-

mains di�cult for a number of reasons. The primary challenge in any peer e�ect analysis is

that the `true' network is almost never observed, and can only be approximated.9 Empirical

speci�cation of networks involves determining the shape of the network (who is connected

to whom?) and the strength of the network (the magnitude of the individual connections

within the network). Neither of these empirical choices is trivial, which may explain the

9An exception may be production networks where worker interactions may be observed. See Horrace et al.
(2016) and Horrace et al. (2020) for examples.
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varied results in the literature.10

Previous work uses a variety of sources to construct peer networks: college roommate

(Sacerdote, 2001), classroom seating assignments (Hong and Lee, 2017), squadrons in the US

Air Force Academy (Carrell et al., 2009; Carrell et al., 2013), number of shared college class-

rooms (De Giorgi et al., 2010), student lunch lines (Presler, 2020) among others. However,

these approaches use data unique to speci�c situations that are not readily generalized.

A reasonable alternative to the aforementioned approaches is using shared student char-

acteristics (homophily) as a proxy for the network. Race and gender are the most common

shared characteristics we see used (Arcidiacono and Nicholson, 2005, Renna et al., 2008, Lavy

et al., 2012, Hsieh and Lin, 2017, Ananat et al., 2018, Billings et al., 2019), but other char-

acteristics such as immigration status (Damm, 2014) also have been considered. Our paper

follows this line of research but considers a broader set of homophilous factors simultaneously

in explaining peer e�ects among elementary school students. Speci�cally, we examine the

relative importance of within-classroom networks based on shared neighborhood of residence,

bus route, bus stop, native language, country of birth, gender, and ethnicity.

An added bene�t of using demographic data to construct peer networks is that it doesn't

require network data that are costly to collect such as friendship surveys (e.g., Add Health;

Patacchini et al., 2017) or social media data (e.g., Facebook; Mayer and Puller, 2008).

3 Data and Sample

This paper uses longitudinal student-level administrative data on student academic perfor-

mance, socio-demographic characteristics, school and classroom codes, and program partici-

pation, which we link to student bus route and bus stop assignment data.

Student-level demographic data comes from the New York City Department of Education

(NYCDOE). These data include socio-demographic characteristics such as gender, race, age,

10The survey of the empirical e�ects in Sacerdote (2001) highlights this variety. More recently, the survey
Paloyo (2020) con�rms that this is still true, although we have progressed in our understanding of these
e�ects - particularly in the di�culty entailed in implementing policy based on peer group manipulation.

6



grade, residential neighborhood, country of birth, primary language spoken at home, an

indicator of eligibility for free or reduced-price lunch, and an indicator for students with

disabilities. Data also include class assignment as well as both current year and lagged

mathematics and reading test scores. We compile this data for academic years 2013-2015.

Transportation assignment data are provided by the NYCDOE O�ce of Pupil Trans-

portation (OPT). Data include whether a student is assigned a bus, bus route number, bus

stop location (latitude and longitude), and bus pickup time all at the student level.

Our sample consists of students in grades 4-5 in general education classrooms where at

least two students are assigned a bus. Table 1 shows summary statistics for our sample.

Notice that the sample is whiter, less poor, and skewed towards Staten Island than the

overall population of students in NYC public schools. This is primarily due to our interest in

bus riders and the higher bus ridership in Staten Island. What follows is a discussion about

our sample and its characteristics.

We exclude students in K-3 because students start taking standardized tests in grade

three, and we include a lagged test score in our model. We focus on elementary students for

three reasons. First, in middle school and beyond, students tend to switch classes as they

move between subjects, but elementary school students typically remain with the same group

of students. Second, elementary school students generally do not choose their classes, and so

while the assignment method by which students are placed in a class together is unknown

(decided by the principal) class assignment is not a result of students choosing their peers.

Finally, bus eligibility in NYC is uncommon for students beyond grade six (only in limited

schools in Staten Island).11 Our sample is restricted to classrooms with at least two bus

riders (they do not have to share a route). Table 1 shows that bus assignment is approaching

25%, which is much higher than the nearly 10% we see over all NYC schools. There may be

11Students between grades three and six are eligible for subsidized (or free) transportation if they live more
than a mile from school. Whether the bus is o�ered as a transportation choice is determined by the school
principal. Weinstein et al. (2021) predicts whether a school o�ers the bus in NYC. They �nd that the largest
predictors of schools o�ering the bus are when schools are larger, whiter, and in Staten Island or Queens.
This is consistent with how our sample compares to the NYC population of fourth and �fth graders. Schools
that do not o�er the bus instead o�er metro cards.
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Table 1: Sample Summary Statistics

Variable Mean Std. Dev. Min Max

Class Size 27.8 3.263 20.0 38.0
Test Scores:

Math Z-Score 0.414 0.941 -3.748 2.932
Reading Z-Score 0.406 0.927 -4.757 3.578
Math Lag Z-Score 0.422 0.924 -5.189 3.838
Reading Lag Z-Score 0.425 0.894 -6.911 5.573

Student Characteristics:
Female 0.505 0.500 0 1
Ever FRPL 0.731 0.444 0 1
Age (months) 120.9 7.746 99.5 163.6
Assigned Bus 0.245 0.430 0 1
Fourth Grade 0.520 0.500 0 1
Fifth Grade 0.480 0.500 0 1

Ethnicity:
Asian/Other 0.237 0.425 0 1
Hispanic 0.250 0.433 0 1
Black 0.164 0.370 0 1
White 0.349 0.477 0 1

Borough:
Manhattan 0.075 0.264 0 1
Bronx 0.115 0.319 0 1
Brooklyn 0.160 0.367 0 1
Queens 0.356 0.479 0 1
Staten Island 0.294 0.455 0 1

Counts:
N Students 55,767 Bus Stops 4,666
Classrooms 2,181 Bus Routes 1,733
Census Tracts 1,967 Zip Codes 182

Mean class size is calculated from the pool of classrooms (2,181) such that a classroom in
2014 is distinct from a classroom in 2015 (even if the physical location is identical). All other
means are calculated using the pool of 55,767 students.
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structural di�erences in schools that serve more than our target grades (such as K-12 or K-8

schools), so we omit schools serving students above grade �ve.12 We limit our analysis to

the general education population.13 Because we are concerned that some classrooms which

appear small in our sample may be Integrated Co-Teaching (ICT) classrooms, we remove

students in classrooms of less than 20 students (5.8%).

Table 2: Language and Country of Birth Frequency in Sample

Top Languages Spoken at Home Top Countries of Birth

Percent Percent
Albanian 0.72 Bangladesh 0.68
Arabic 1.19 China 1.13
Bengali 1.58 Dominican Republic 0.52
Chinese (any) 8.44 Ecuador 0.13
English 64.98 Guyana 0.17
Haitian Creole 0.53 Jamaica 0.34
Korean 1.89 Mexico 0.27
Russian 3.44 Pakistan 0.35
Spanish 11.56 Russia 0.22
Urdu 0.97 Trinidad & Tobago 0.04
Other 4.71 USA 91.82

Other 4.33
Total 100 Total 100

Percentages are caclulated based on the sample of 55,767 student-year observations.

Demographic information includes the language spoken at home and the country of birth.

Most students report English as the primary language spoken at home (58.9%) and were born

in the US (89%). We construct a list of the most common languages spoken at home and most

common countries of birth and utilize this subset of languages in constructing our networks.

Table 2 shows which languages and countries are most common and the percentage of the

12For example, there may be older students who ride the bus with the students in our sample. While our
approach ignores these out-of-class peer e�ects, having students on the bus whom we do not observe dilutes
the chance for students who ride the same bus to be in the same class. This can be systematically di�erent
for portions of the sample, and if the group of students choosing to attend K-8 schools is di�erent from those
attending K-5 schools, we introduce bias into our peer e�ect estimates by making the weighing matrix a
function of school type (and the di�erences in student characteristics that comes with that). We avoid this
issue by ignoring schools serving higher than grade �ve.

13Speci�cally, we remove full-time special education students, students who attend a fully special education
school, and students who ride a special education bus.
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sample each group represents.14

4 Empirical Model

4.1 Peer Networks Based on Homophily

This paper constructs peer networks based on the idea that students are drawn to other

students with similar observable demographic characteristics (homophily). A number of

papers have studied homophily, but typically only a few demographic characteristics are

considered individually. Most commonly considered are gender and ethnicity.15 Our empirical

model expands on gender and ethnicity and simultaneously considers a broad set of factors

in explaining peer e�ects among New York City elementary school students.

In our model, student i is the unit of observation and the classroom is the environment

in which students interact and perform academically. Therefore, social interactions with

students in other classrooms are considered negligible. As such, our model is well-suited for

estimating peer e�ects in elementary schools, where students spend most instructional time

in their homeroom.16 Let the number of students in each of c = 1, ..., C classrooms be nc, so∑C
c=1 nc = n is the total number of students in the sample or universe. Suppose there are K

ways to demographically partition students in a classroom (i.e., gender, ethnicity, etc.).

For ease of exposition, we �rst consider a simple case of two demographic partitions,

gender and ethnicity, (i.e., K = 2) and then present a generalized model with K partitions.

14As we shall see in Section 4, when constructing peer networks based on homophily, we exclude `other'
categories. That is, students in these categories are not connected to one another and are isolated from the
network. For example, a student who speaks French at home does not share a home language connection
with a student who speaks Indonesian.

15Most studies �nd that peer e�ects are stronger within gender or racial groups than across them. See
Soetevent and Kooreman (2007), Fruehwirth (2013), Nakajima (2007), Mayer and Puller (2008), Hsieh and
Lin (2017), Xu and Fan (2018), among others.

16Thus, an implicit assumption in our model is that peer e�ects occur only in the classroom. This assump-
tion is not uncommon in the literature (e.g. Fruehwirth, 2013), and in our context of elementary education,
it may be reasonable to assume the interactions beyond the classroom don't create academic spillovers in
appreciable ways. Burke and Sass (2013) show that classroom peers are much more in�uential than cohort-
level peers. This is intuitive, as we should expect classmates who have opportunities to interact during the
entire school day to be much more in�uential on one another than schoolmates with minimal opportunities
for interaction.
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We assume there are only two genders, boy and girl, and four ethnicity groups, Black, White,

Hispanic and Asian. To construct gender and ethnicity networks, we endow each student i in

classroom c with scalar values for two unordered categorical variables that determine his/her

gender and ethinicity, hg,ic ∈ {1, 2} and he,ic ∈ {1, 2, 3, 4}, where g and e stand for gender

and ethnicity, respectively; hg,ic = 1 indicates student i is a boy; hg,ic = 2 indicates a girl;

and he,ic = 1, 2, 3, 4 indicate a Black, a White, a Hispanic and an Asian student, respectively.

We hereafter refer to these variables as partition variables. In this example, each student

belongs to one of the two gender groups and one of the four ethnicity groups.

Then, our gender network matrix (before row-normalization) for classroom c, W∗
g,c, is

speci�ed as
[
W∗

g,c

]
ij

= w∗g,ijc = 1(hg,ic = hg,jc) for i 6= j and zero otherwise,17 where 1(·) is

an indicator function that equals one if the argument is true and zero otherwise. The ethnicity

network can be constructed similarly. For example, consider a classroom c consisting of �ve

students {s1, s2, s3, s4, s5}, where student s1 is a Hispanic girl; s2 is a Hispanic boy; s3 is an

Asian boy; s4 is an Asian girl; and s5 is an Asian girl. Then, W∗
g,c and W∗

e,c are given by

W∗
g,c =

s1 s2 s3 s4 s5

0 0 0 1 1

0 0 1 0 0

0 1 0 0 0

1 0 0 0 1

1 0 0 1 0



s1

s2

s3

s4

s5

W∗
e,c =

s1 s2 s3 s4 s5

0 1 0 0 0

1 0 0 0 0

0 0 0 1 1

0 0 1 0 1

0 0 1 1 0



s1

s2

s3

s4

s5.

In this example, student s1 is not connected to student s2 through the gender network,

but is connected through the ethnicity network. Also, student s1 and s3 don't share any

demographic characteristics, so they are not directly connected through the networks. How-

ever, as we shall see in the next section, they are indirectly connected through other students

who share gender or ethnicity with them (e.g., student s2 shares ethnicity with s1 and gender

17Note that we are using `exclusive averaging' where individual students are not their own peers. So, the
diagonal entries of our network matrices are all zero (i.e. zero-diagonal matrices).
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with s3), and their outcomes can be a�ected by each other through this intermediating group

of students. These partial and indirect connections exist as long as the gender and ethnicity

partitions divide students di�erently. Next section discusses how this variation in partition

structures identi�es our model.

Let Wg,c be the row-normalized version of W∗
g,c. That is, each row of Wg,c sums to 1,18

then Wg,cyc is a vector of mean outcomes of the students with whom each student share

gender, where yc is an nc × 1 outcome vector. We,c is similarly de�ned. In this manner,

we can construct K homophily networks. We hereafter index each of the demographic par-

titions/networks by k = 1, ..., K, and denote the number of possible categories within kth

partition by Rk (e.g., Rk = 2 for gender partition).19 Accordingly, for demographic partition

k, hk,ic = {1, ..., Rk} and Wk,c indicate the partition variable and homophily network matrix,

respectively.

Given these K homophilous weighting matrices, one may sum them to a single, aggregate

network such that W∗
c = W∗

1,c + ... + W∗
K,c, row-normalize it, and estimate a single peer

e�ect on the aggregate network. This is the approach of De Giorgi et al. (2010) where k

indexes di�erent sections of nine courses to which college students are randomly assigned.

This approach implicitly assumes equal weighting for all partitions (i.e., each course is equally

important in creating social connections and enhancing student productivity), and it appears

to be an assumption of convenience.

However, our goal is to determine the relative importance of these partition networks in

explaining peer interactions. Therefore, we do not aggregate the networks and consider a

more general group interaction model such that

yc =
K∑
k=1

λkWk,cyc + Xcβ+
K∑
k=1

Wk,cZcθk + δcιnc + uc. (1)

18The row-normalized gender weights matrix Wg,c is given by Wg,c =

 0 0 0 1
2

1
2

0 0 1 0 0
0 1 0 0 0
1
2 0 0 0 1

2
1
2 0 0 1

2 0

.
19Since each student belongs to one of the groups in each partition, each student belongs to K groups, and

there exist
∑K
k=1Rk total groups in the model.
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Xc is an nc × p matrix of exogenous variables consisting of a matrix of variables Zc that

vary within demographic groups and a matrix of dummy variables Dc generated from the

partition variables hk,ic for all k. That is, Dc consists of
∑K

k=1(Rk − 1) columns associated

with
∑K

k=1Rk demographic groups at our disposal. Thus, Xc = [Zc,Dc] and β = [β
′
1,β

′
2]

′

where β1 and β2 are coe�cient vectors on Zc and Dc, respectively. ιnc is an nc × 1 vector of

ones, and uc is an error vector satisfying E(uc|Xc, δc, {Wk,c}k=1,...,K) = 0.20

Parameters λk and θk capture endogenous and exogenous (contextual) peer e�ects, re-

spectively, associated with kth homophily network, and δc captures correlated e�ects among

students in classroom c (Manski, 1993).21 Endogenous peer e�ects measure the extent to

which one's outcome is in�uenced by her peers' outcomes; exogenous peer e�ects measure

the extent to which one's outcome is in�uenced by her peers' characteristics; and correlated

e�ects, in our context, may arise from non-random classroom assignment or common envi-

ronmental factors faced by students in the same classroom (e.g. teacher quality). All three

e�ects cause correlations in the outcome between students in a classroom, but only the �rst

two are the result of peer/social interactions.

Endogenous peer e�ects are of particular interest since these e�ects produce a social

multiplier. This can be seen from equation (1), where any changes in student i's outcome

a�ect her peers' outcomes through the endogenous peer e�ect term, but the change in her

peers' outcomes a�ects her peers' peers' outcomes and also i's outcome again. These feedback

and chain e�ects imply that the e�ect of any policy targeting a subpopulation can be socially

shared and multiplied if such an indirect social e�ect exists. However, identifying the three

e�ects separately in the model is challenging since the endogenous peer e�ect is some function

of the other e�ects, which can be seen from the reduced form of equation (1) (see equation

20A scalar form of equation (1) is given by

yic =

K∑
k=1

nc∑
j=1,j 6=i

λkwk,ijcyjc + x
′

icβ+

K∑
k=1

nc∑
j=1,j 6=i

wk,ijcz
′

jcθk + δc + uic.

21Note that there is perfect multicolinearity among the RHS variables in equation (1) if we include the
partition dummies Dc in Zc of the exogenous peer e�ect term.
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(A.2) in Appendix A). Therefore, there may be strong correlations between the terms, which

raises an identi�cation issue, referred to as re�ection problem in Manski (1993). Various

identi�cation conditions/restrictions have been studied in the literature to separately identify

the e�ects. In the next section we build on existing identi�cation results to understand how

our group interaction model is identi�ed.

4.2 Sources of Identi�cation and Potential Issues

Identi�cation of our model hinges on variations in partition structures and group sizes.22

In our model, students experience peer e�ects from di�erent demographic groups depending

on their demographic characteristics. Therefore, the distribution of student outcomes in a

classroom is a�ected by how each demographic partition divides students into groups and

how groups of one partition intersect with the others. Importantly, we show below that

variation in partition structures generates exclusion restrictions similar to those by �transitive

triads� (Bramoullé et al., 2009) and �partially overlapping groups� (Laschever, 2013; De

Giorgi et al., 2010) in the literature. Therefore, compared to the group interaction model of

Lee (2007), which solely relies on group size variation for identi�cation, our identi�cation is

less mechanical.

Consider again the case with two partitions, each with two groups in the partition, gender

(male and female) and ethnicity (Hispanic and Asian). Provided that the exogenous variables

zic in Zc of equation (1) vary su�ciently across students, it is easy to see that the exogenous

gender peer e�ect term (i.e., Wg,cZc) and the exogenous ethnicity peer e�ect term (i.e.,

We,cZc) contain di�erent variations for each student as long as the gender and ethnicity

partitions divide students di�erently (i.e., Wg,c 6= We,c), so they can be separately identi�ed.

For instance, in the case of Hispanic boys, their exogenous gender e�ect terms contain the

characteristics of Asian boys but not that of Hispanic or Asian girls, whereas their exogenous

22The structure of each demographic partition determines the structure of the associated homophily net-
work. So, the terms �variation in partition structure� and �variation in network structures� are interchange-
able. Also, partition structure determines the relative sizes of the groups within each partition, but the
absolute sizes of the groups are ultimately determined by classroom sizes.
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ethnicity e�ect terms contain that of Hispanic girls but not that of Asian boys or girls.

Also, observe that in the model without endogenous social e�ects (i.e., λ = 0), there

is no way for Hispanic boys to a�ect the outcomes of Asian girls since they don't share

any demographic characteristics. This is true for any pair of groups that don't share any

demographic characteristics. However, if endogenous gender peer e�ects exist, Hispanic boys

can a�ect Asian girls through Hispanic girls such that characteristics of Hispanic boys a�ect

the outcomes of Hispanic girls, which in turn a�ect the outcomes of Asian girls. Similarly, if

endogenous ethnicity peer e�ects exist, Asian boys can intermediate such indirect interaction.

This implies that, as long as there exists such indirectly connected groups, which depends on

the structures of the partitions, endogenous social e�ects generate variations di�erent from

those by exogenous e�ects and thus the two e�ects can be separately identi�ed.

These are exclusion restrictions generated by the partition structures in our model, similar

to the restrictions by �transitive triads� (Bramoullé et al., 2009) and �partially overlapping

groups� (Laschever, 2013; De Giorgi et al., 2010). De Giorgi et al. (2010) use the idea of

partially overlapping groups to determine network weights based on how frequently two stu-

dents met in a series of classes. Their model estimates a single peer e�ect parameter using an

aggregated network, which uses variation in network weights at the individual level as exclu-

sion restrictions. Laschever (2013) considers a similar multiple reference group framework,

but focuses on estimating peer e�ects through one network, while using the other networks

as exclusion restrictions.

In addition to the variation in partition structures, variation in group sizes also play a

role in the identi�cation of our model. Indeed, our model can be seen as a generalization

of the group interaction model of Lee (2007), who considers a linear-in-means model with

group �xed e�ects where individuals interact in groups with equal intensities. Lee's model is

a special case of our model where K = 1 and and Rk = 1. That is, each class is completely

homogeneous (a single partition with a single demographic group). He shows that the model

is identi�ed if there is su�cient variation in classroom sizes. Intuitively, under exclusive
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averaging (i.e., individuals are not their own peers), better students have worse peers, which

reduces the dispersion in outcomes and this dispersion reduction decreases with group size

in the model (Bramoullé et al., 2020). Therefore, if there is su�cient variation in group

sizes, peer e�ects can be identi�ed by exploiting such an impact of group size on outcome

dispersion.

The same identi�cation mechanism works for our model, but our model partitions class-

mates further into multiple demographic groups, which creates much richer variation in group

sizes that helps identi�cation. Lee (2007) also shows the rate of convergence of the peer e�ect

estimator is slower when average group size is large relative to the number of groups. Our

demographic groups within a classroom are generally small, so our estimates may be more

precise than a single classroom-level estimate. Identi�cation based on group size variation

may be seen as mechanical, but it can help identi�cation when the variation of partition

structure is weak.

Appendix A provides more technical details about the identi�cation of our model using the

identi�cation results from Boucher et al. (2014) and Bramoullé et al. (2009). Also, Appendix

B includes simulations to examine whether there are su�cient variations in the group sizes

and partition structures across classrooms in the NYC data, and the results suggest that the

current empirical distributions of the group sizes and partition structures are su�cient for

consistent estimation of peer e�ects.

A potential concern in our identi�cation strategy is that students' outcomes may be

correlated even without peer e�ects simply because similar students were assigned into the

same classroom and also they were taught in the same environment (e.g. teacher). These

types of confounders are referred to as correlated e�ects in the literature.23 Particularly,

correlations due to non-random assignment can be seen as network endogeneity in our context

since networks are formed based on classroom assignment. The usual econometric treatments

for such correlated e�ects are using �xed e�ects, but we note that in the teacher quality

23Bramoullé et al. (2020) survey the recent literature on correlated e�ects and network endogeneity in peer
e�ect models.
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literature, controlling for lagged student performance appears su�cient to mitigate this type

of selection bias (Kane et al., 2013; Chetty et al., 2014). Therefore, we control for past

performance (as well as both classroom and network �xed e�ects) to mitigate this sorting issue

Repetitive: delete this phrase?. We also examine the randomness of classroom assignment

for our sample using a series of multinomial logit analyses, which we report and discuss

in Appendix C.1 and show no systematic patterns in classroom assignment associated with

demographic variables. This is not direct evidence for random assignment, but indicates that

classroom assignment is not a function of the associated demographic partitions.

Another potential issue is that there may be unobserved networks that are correlated with

our demographic networks. In particular, if these missing links are associated with our demo-

graphic networks di�erentially, our rankings of peer e�ects across demographic partitions will

be biased. One potentially important network might be student performance. Some papers

in the peer e�ect literature suggest that students may interact along performance levels (e.g.,

Carrell et al., 2013). Therefore, we include a peer network based on past performance as a

control and check the sensitivity of our estimates.24 The results reported in Appendix C.2

imply that our estimates are largely robust to this network.25

4.3 Empirical model

There are a few di�erences between equation (1) and the model that we ultimately estimate.

First, we use a panel of data, so we employ both cross-sectional and time variations in peer

networks and covariates (i.e. Wk,ct and Xct) to estimate model parameters. This also allows

us to add a one period lag of the dependent variable, yc,t−1, on the right-hand side of the

24To construct the past performance network, we rank students in each classroom based on previous year's
test scores and then divide them into groups based on quantile.

25Appendix B includes a simulation experiment that generates data using a standard peer e�ect model with
a single friendship network, where friendship is formed based on some shared demographic characteristics,
and then applies our homophily network model to the data. We �nd that the rankings of demographic peer
e�ect estimates from our model re�ect the relative importance of each demographic characteristic in the
friendship formation. This suggests a decomposition or approximation feature of our model: when the true
links are unobserved, our estimates decompose the peer interactions into the portions associated with each
demographic characteristic/partition and capture their importance in explaining the interactions.
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model to control for student's persistent heterogeneity in test scores. Due to the addition

of the time dimension, classroom �xed-e�ects, δc, are expanded to classroom by time �xed-

e�ects, δct.

Second, we have assumed so far that each partition is complete. That is, we have assumed

that for each partition, every student must belong to exactly one demographic group in each

partition. However, there are groups in some partitions that do not facilitate a connection

between students. For example, some students ride the bus while others do not. Those that

ride the bus together may form stronger in-classroom connections. These connections may

be the result of friendships strengthened while traveling on the bus together, or they may

re�ect homophily based on shared experiences due to shared geography. Neither of these

reasons for increased interaction occur for students who do not ride the bus. In this case,

the weighting matrix for bus ridership may include a block of zeros for students who do not

have connections with other students in this partition (i.e. those who do not ride the bus are

excluded from the bus ridership network). These serve as additional exclusion restrictions

that helps identify the model.

Therefore, our empirical model is:

yct =
K∑
k=1

λkWk,ctyct + Xctβ+
K∑
k=1

Wk,ctZctθk + yc,t−1γ + δct · ιnct + uct (2)

where nct is the number of students in classroom c at time t. We include seven homophily

peer networks: shared Gender, shared Ethnicity, shared Language Spoken at Home, shared

Country of Birth, shared Bus Route, shared Bus Stop, and shared Residential Neighborhood

(census tract or zip code). The covariate vector, Xct, includes: a gender dummy (Female),

a dummy for `free or reduced price lunch' (FRPL), Age in months, Age2, a dummy for a

bus rider (Bus), three dummies for race (Asian, Black and White with Hispanic as the

baseline group), and dummies for other indicator variables that are used to construct the

weights matrices (e.g. dummies for language spoken at home, country of birth, etc.). The

covariate vector for contextual e�ects, Zct, includes FRPL, Age, Age
2, and lagged outcome
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yc,t−1.
26

We estimate the model using a quasi-maximum likelihood method in a similar fashion as

Lee et al. (2010). Estimation details are in Appendix D. The estimation approach requires

that the determinant of Ict−
∑K

k=1 λkWk,ct is strictly positive for any c and t in equation (2) to

ensure the log-likelihood function is well de�ned. When weights matrices are row-normalized

(e.g. our case), the condition is satis�ed if
∑K

k=1 |λk| < 1. Therefore, we only consider

parameter values satisfying
∑K

k=1 |λk| < 1 in our estimation procedure. This ultimately

implies that not all peer e�ects of di�erent partitions can be large, but only some of them

can. As we are mostly interested in the relative importance of these factors, this does not

pose a problem.

When the peer e�ect estimates are ranked to examine the relative importance of the

partitions, the ranking statistics are not deterministic, but contain errors due to sampling

variability. We apply the method of `ranking and selection' to properly infer the most im-

portant partitions from the ranked estimates. The procedures select a subset of λ1, ..., λK

that are statistically larger than the others at a pre-speci�ed error rate, α ∈ (0, 0.5), while

accounting for the inherent multiplicity and uncertainty in the ranked estimates, λ̂k's.
27 Let

λ[K] ≥ λ[K−1] ≥ ... ≥ λ[1] be the population rankings of peer e�ects, so λ[K] = maxKk=1 λk.

The rankings of peer e�ects estimates are similarly denoted as λ̂(K) ≥ λ̂(K−1) ≥ ... ≥ λ̂(1),

so λ̂(K) = maxKk=1 λ̂k. Ranking and selection procedures recognize the uncertainty that the

partition that is estimated to have jth largest peer e�ects, (j), may not correspond to the

partition that has the jth largest peer e�ects in the population, [j], in general.

To account for such uncertainty, with assuming (asymptotic) normality of the estimates

λ̂1, ..., λ̂K and general variance-covariance structure, the procedures identify a set of peer

e�ect indices, ζ ⊂ {1, 2, ..., K} that satis�es Pr{[K] ∈ ζ} ≥ 1− α where α = 0.05, typically.

26As discussed before, partition dummies are excluded from Zct to avoid perfect multicollinearity. Since
there are seven homophily weights matrices and four covariates in Zct, twenty eight contextual e�ects are
estimated in our model. We do not report the contextual e�ect estimates in our results below to save space
(these estimates are available upon request from the authors).

27See Horrace and Parmeter (2017), who recently apply ranking and selection to economics journal citation
counts to determine a subset of the `best' journals.
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In other words, the procedures estimate the (minimal) set of the population indices that

includes the unknown population index that is associated with the largest parameter value,

[K], with probability at least 1− α. If the inference is very sharp, ζ may be a singleton, but

ζ may include all the indices if the inference is very weak.28

5 Main Results

We begin with our results for mathematics and reading scores for fourth and �fth graders

in Table 3. The test scores are normalized Z-scores. To save space we do not report the

contextual e�ect results, only the peer e�ects (λk, k = 1, ..., 7) and the marginal e�ects (β)

of the covariates (Xct) in equation (2). Table 3 shows the results for four models. Models (1)

and (2) use mathematics test score as the outcome, and models (3) and (4) use reading test

score as the outcome. The �rst model for each outcome de�nes a student's neighborhood

as their zip code of residence (models (1) and (3)) and the second model for each outcome

de�nes a student's neighborhood as their census tract of residence (models (2) and (4)).

Notice that this change has very little e�ect on estimates for other variables in the model.

Four of the mathematics score peer e�ects are signi�cant in column (1), with Ethnicity

(0.221), Language (0.096), Gender (0.054), and Neighborhood (0.017) in rank order. Bus

Stop, Bus Route, and Country are not statistically signi�cant.29 In column (2) where we

de�ne Neighborhood using census tract rather than zip code, the estimates are very similar,

with a slight increase in the point estimate for Neighborhood. The four networks that were

signi�cant in model (1) remain signi�cant in model (2), and the insigni�cant estimates remain

28The cardinality of ζ is increasing in K since the inference needs to make more pairwise comparisons as K
increases, which makes it harder to distinguish [K] at a �xed error rate, α. This is the concept of `multiplicity.'
To conduct the inference we need critical values drawn from a k-dimensional multivariate normal distribution
with covariance structure determined by the hessian of the converged log-likelihood. These critical values
were all around 2.5, larger than the usual critical value of 1.96 from a univariate normal distribution and,
hence, accounting for the multiplicity.

29We should note that we have not included �xed e�ects for speci�c bus stops and bus routes due to
computational constraints, although we have included an indicator for whether students ride the bus. As
a result, these estimates may be biased by correlated e�ects related to the bus. However, these results are
already much weaker than other networks, and the additional controls are unlikely to signi�cantly increase
the in�uence of these networks.
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insigni�cant as well.

Turning to the results for Reading Test Z-Scores, even though the sample selection process

is identical to that for the mathematics scores, there are some notable di�erences in peer

e�ects across the two sets of results. First, the mathematics peer e�ects are typically larger

than the reading peer e�ects except for Gender (compare 0.054 for mathematics to 0.150 for

reading) and Bus Route (compare statistically signi�cant 0.028 in reading to insigni�cant

0.008 in mathematics). Second, the peer e�ects rankings are about the same for reading and

mathematics scores. The biggest di�erence is that Gender is ranked third in mathematics

(0.054), but is ranked �rst in reading (0.150). Additionally, Bus Route is signi�cant in

reading (0.028) and ranks before Neighborhood. Country of birth and Bus Route remain

statistically insigni�cant for both outcomes. Only the census tract de�nition of Neighborhood

is statistically signi�cant in reading. In both outcomes, the estimate is larger for the census

tract de�nition of Neighborhood, suggesting that the census tract is a better representation

of an elementary student's neighborhood peer group.30

The ranked peer e�ect estimates contain sampling errors, so we examine if the the rankings

of peer e�ect estimates are statistically signi�cant using the ranking and selection procedures.

We �nd that only Ethnicity is in the subset of the best in case of mathematics test scores

while both Ethnicity and Gender are in the best set in the case of reading test scores. This

is essentially because the Ethnicity and Gender peer e�ect estimates are considerably larger

than the others, so they remain in the best category even after accounting for sampling errors.

A few remarks follow: �rst, the three strongest networks are consistent between both

outcomes (Ethnicity, Language, and Gender). Second, our estimates imply that social e�ects

are larger in mathematics than in reading.31 This is consistent with the story that students

30While we would like to �nd the �optimal� neighborhood size, we were unable to push this further with
census blocks, due to computational di�culties with the large number of �xed e�ects that would entail (we
incorporate over 2,100 census tracts already). We also had concerns of being underpowered with census blocks
(there are over 23,000 unique census blocks associated with our sample). The bus networks may substitute
as smaller neighborhood de�nitions, particularly the Bus Stop network. Our results suggest that this is not a
better approximation than census tract, but this could also be attributed to the sparsity of the bus network.

31See that more networks exhibit larger coe�cients in math than in reading, and also the sum of network
estimates is larger in mathematics than in reading.
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learn language and reading skills both at home and at school, but mathematics is learned

primarily at school. Next, the primary Language spoken at home is strong for both outcomes,

but stronger in mathematics than reading. The smaller e�ect and importance of Language in

reading may come from two mechanisms. The �rst is that schools teach English speci�cally,

so other language groups may play diminished roles. The second is the aforementioned idea

that students primarily learn mathematics at school, such that we might expect a smaller

coe�cient for reading estimates in general. We explore the primary Language spoken at

home and Country of birth networks further in Section C.

Additionally, these results suggest that in�uential peers are generally those that share

obvious similarities: Ethnicity, Gender, and Language. Interactions outside the classroom,

such as shared Bus Stop, Bus Route, and neighborhood appear less important. A narrower

ethnicity group (Country of birth) appears less important. This could be a result of friendship

sorting occurring early in the year, making characteristics which are immediately obvious to

students more important for friendship formation.

The next panel of Table 3 contains estimates for the marginal e�ects of our control

variables (Xct). For mathematics, being male is associated with increased scores (borderline

signi�cant 0.007), while Free or Reduced-Price Lunch (FRPL) status correlates with lower

scores (signi�cant −0.076). The reference group Hispanic does worse than the other three

groups, although Black is not statistically di�erent. Lag Test Score is the strongest predictor

of current-year performance (0.711). Students who ride the bus do worse than those who

do not (-0.021), although this may be due to selection. Age (measured in months) is also

statistically signi�cant, and we include both age and age-squared in the model. Being older

is correlated with better test results, but being too old (possibly due to grade retention) is

associated with lower test results.

It is also important to notice the dimensions along which we observe performance gaps.

There are signi�cant performance gaps along both ethnicity and gender, which we observe in

the marginal e�ects (β). Because these are also important dimensions of the peer interaction
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as seen in the peer e�ects estimates, equation (A.3) implies that these performance gaps are

widened by classroom peer e�ects. Recall that endogenous peer e�ects mitigate performance

gaps between high and low performing students as low performing students are more helped

by their higher performing peers. However, they may increase existing gaps between groups

if peer interactions exist within the boundaries of groups. Therefore, within ethnicity and

gender groups, there may be signi�cant peer e�ects, and these e�ects may exacerbate perfor-

mance gaps between di�erent gender or ethnic groups. Using the point estimates from Table

3, our results suggest that any within-classroom gender test score gap would be increased

by 5.71% in mathematics and 17.65% in reading through the classroom peer e�ects mecha-

nism. Similarly, the black-white test score gap would increase by 28.37% in mathematics and

17.65% in reading. Nonetheless, these negative impacts are mitigated in our model if there

is enough variation of students within demographic groups as they �move� across partitions.

For example, performance gaps between boys and girl are less a�ected if there is su�cient

variation of ethnicity among boys and girls (and if there are positive spillovers in ethnicity).

Table 4: Peer E�ects (λ from Individual Models)

Mathematics Reading

Ethnicity 0.246 (0.008) 0.128 (0.009)
Language 0.156 (0.008) 0.078 (0.009)
Gender 0.056 (0.013) 0.149 (0.012)
Census Tract 0.026 (0.006) 0.016 (0.006)
Zip Code 0.034 (0.009) 0.014 (0.009)
Bus Stop 0.034 (0.011) 0.030 (0.011)
Bus Route 0.026 (0.010) 0.034 (0.010)
Country 0.038 (0.016) 0.040 (0.017)

Observations 55,598 55,221

Estimates shown are the parameters of interest from the respective single-network models.
Models include classroom �xed e�ects, four contextual e�ects, lagged test score, age, age
squared, and �xed e�ects for gender, poverty, ethnicity, census tract, country of birth, lan-
guage spoken at home, and whether student rides the bus. Ethnicity is de�ned with Hispanic
as the reference group.

Table 4 shows peer e�ects estimates when the model includes only one of our seven ho-
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mophilous peer networks. The goal of this exercise is to show stark di�erences in peer e�ect

estimates when they are estimated individually.32 Nearly all estimates are larger and statisti-

cally signi�cant, and the rankings of the estimates are quite di�erent than before. This implies

the current practice of considering only a few characteristics individually when studying ho-

mophily may su�er from omitted variable bias, and it is indeed important to simultaneously

control for all networks to tease out the individual contribution of each homophilous factor

on peer interaction.

6 Classroom Composition: An Exploration of Diversity

In this section, we ask how the e�ect of the Ethnicity network changes as the classroom

becomes more ethnically diverse. Does the ethnicity network become more or less important

in a more diverse setting? Does classroom diversity a�ect the in�uence of networks correlated

with ethnicity? Do networks orthogonal to ethnicity substitute for the ethnicity network?

These are questions we will explore.

For this analysis, we construct a measure of diversity. Notice that there are four groups

of interest in our Ethnicity network: Hispanic, Black, White, and Asian/other. To deal with

more than two groups, we use Theil's entropy index (Theil, 1972, White, 1986), which we

normalize such that values fall between zero and one:

hc = −
∑K

k=1 pck ln(pck)

ln(K)
(3)

where pck is the proportion of students in classroom c who are members of that ethnicity k.

hc is the normalized entropy index for classroom c, and we will call it the diversity index. The

index is maximized when there is equal representation of all groups (i.e. ∀ k, pck = 1
K
), and

minimized at zero when only one group is represented (i.e. ∃ k, pck = 1). We calculate this

diversity index for each classroom in our sample, and then split the data based on diversity

32These models include the same contextual e�ects and marginal e�ects as in Table 3.
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quantile.

Table 5 shows the results from the subsamples above and below the median diversity

index. In both outcomes we see that the Ethnicity network is more in�uential in the more

diverse environment. The di�erence is substantial. In mathematics, the peer e�ect drops

from 0.233 to 0.192 (percent di�erence of 19%) and in reading it drops from 0.130 to 0.092

(34%). Table 6: Panel A divides the mathematics sample into quartiles by diversity. Column

(1) is the most diverse, and column (4) contains the least diverse classrooms. Notice that

columns (1)-(3) have similar estimates for the Ethnicity network, but column (4) is much

smaller. Comparing column (1) to column (4) we see a drop from 0.224 to 0.153 (38%). This

pattern is consistent in Panel B, for reading. Columns (1)-(3) have similar estimates of the

Ethnicity peer e�ect, but the estimate in column (4) is starkly di�erent. Again comparing

columns (1) and (4) we see a drop from 0.128 to 0.058 (75%).

There may be two potential mechanisms at play, which we discuss with an example of

two groups for simplicity: a majority and minority. If the two groups are equal sized, there

is no majority, and diversity is maximized. This is analogous to column (1) in Table 6. On

the other hand, column (4) occurs when the minority group is quite small, so that there

are few to no peers from their group. In this case, the majority group is large enough that

their group identify is largely irrelevant as a tool for subdividing the classroom and selecting

friends. However, minority students may be isolated from the classroom and their group peer

e�ect is near-zero in such a situation. These two channels are likely to lead to the full drop

that we observe: majority students �nd ethnicity to be a less in�uential network when most

of their peers share the same ethnicity,33 and minority students become isolated. Despite

the di�erence in context, these results may help to explain why Arcidiacono and Nicholson

(2005) �nds peer e�ects along gender lines but not ethnicity lines in US medical schools, as

medical schools are known to lack diversity (Lett et al., 2019).

33This story is consistent with the �ndings of Mayer and Puller (2008). They �nd that minority students in
particular are more likely to make connections with other minorities at their university. This e�ect is larger
when the minority group makes up a smaller portion of the student body.
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It is important to note that this exploration is correlational.34 We have not randomly

assigned students into diverse classrooms, and school diversity is likely tied to neighborhood

choices and other endogenous factors. Nonetheless, these results are striking and suggest that

Ethnicity (and possibly other networks) retain their importance over most of the distribution,

but drop o� in importance when diversity is low. There are two questions this exercises

raises which are beyond the scope of this paper. The �rst is whether unrelated networks are

substitutes for one another. That is, if one network (ex: Ethnicity) is not diverse, does the

importance of another group (ex: Gender) increase? 35 We see related behavior in Carrell

et al. (2013), where USAFA students from top and bottom ability quartiles were placed in

squadrons without the middle performers. This decrease in diversity lead to more within-

squadron segregation along ability lines. Second, do di�erent groups within the network place

di�ering values on membership to their group? Hsieh and Lin (2017) �nds that middle and

high school females are more a�ected by their peers than their male counterparts. Similarly,

they �nd that white students are more a�ected by their peers than other racial groups.

Presler (2022) looks at the NYC context and �nds that white students are less in�uenced by

peer BMI than other ethnicities.

It is useful to look at the story told by Table C.5. In Table C.5, we see that primary

Language spoken at home is much more important in Queens - the borough that has the

highest proportion of non-English speakers as well as the largest borough in our sample.36

Coupled with the �ndings in Table 6, the change in importance that we see in primary

Language suggests a similar pattern - diversity matters for network importance.

34That said, we see some similar patterns to those presented here when we split by borough, which can be
thought of as causal (attending a school outside a student's borough of residence is very rare).

35The results in Table 5 are consistent with the idea that Ethnicity and Gender are substitutes based on
above and below the median diversity level. However, this relationship is less clear in Table 6 when broken
into quartiles based on diversity. The pattern shown in Table C.5 is similarly noisy. Further exploration of
this question is desirable.

36This is supported further in the Appendix. Table C.3 shows that when we remove connections based
on English as a primary language and students born in the US, the primary Language spoken at home and
Country of birth networks increase in importance. This suggests the language has higher salience when there
is diversity in the network - just as we see in this example in Queens.
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7 Conclusion

In this paper, we �nd that shared ethnicity, gender, and language spoken at home networks

are important sources of spillovers for mathematics and reading test scores in NYC elementary

schools. This supports the assumption made by much of the literature that gender and

ethnicity networks are important. When modeled with these characteristics, neighborhood,

bus stop, bus route, and country of birth appear less important for academic peer e�ects.

Even though we �nd no signi�cance e�ect, to our knowledge, this is the �rst study to explore

the importance of bus peers in the classroom. These �ndings may increase our understanding

of network formation within the classroom and our ability to predict group behavior after a

change in the network.37

In the standard social interaction model, endogenous spillovers mitigate performance gaps

by lifting the performance of low performing students more than the performance of high

performing students. In this paper, we show that if such spillovers work within the boundaries

of groups, the performance gap between students in di�erent groups increases (i.e. increased

gender gap or racial disparity in academic performance). Since ethnicity is an important

within-classroom network for social spillovers, this implies that known performance gaps,

such as the racial performance gap, may be exacerbated even in diverse classroom settings.38

We also show that altering the make-up of the classroom changes the impact of these

networks. In particular, we show that low ethnic diversity is correlated with low impact for

that network. This is likely due to the irrelevance of the network for the majority group,

but the negative impact of isolation on the minority group may also contribute to the e�ect.

37Consider the experiment in Carrell et al., 2013, where the authors implicitly assumed that students
would form friendships in the same manner before and after the policy change. This proved to be a faulty
assumption, and successful implementation of policy attempting to harness peer e�ects in the classroom will
likely include an understanding of how within-classroom networks will change due to the policy change. This
involves understanding which groups may be in�uential and how in�uential groups a�ect the outcome. This
paper contributes to our understanding of both issues.

38This does not imply that classroom diversity is not useful. Our estimates point out that the existence of
these within-classroom partitions may have a negative e�ect on performance gaps relative to a model without
students sorting along these lines, and highlight the importance of facilitating cross-group interaction as a
means of mitigating these gaps.
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Further research is needed to disentangle these mechanisms. We also provide suggestive

evidence that this is true for diversity in other networks, such as primary language spoken

at home.

Lastly, note that the results we present in this paper are multiplicative peer e�ects which

control for contextual e�ects. This means that interventions targeting a subset of students

in the classroom may produce spillovers to those not targeted by the intervention. Our

results inform which groups receive the strongest e�ects of these spillovers in the presence of

groups. For example, a program providing additional mathematics tutoring will produce the

strongest spillovers to students sharing ethnicity with the tutored students; extra tutoring in

reading will result in the strongest spillovers for students sharing either gender or ethnicity.

Students who share a primary language spoken at home will also see important spillovers for

both outcomes. This type of information should be useful for designing optimal interventions

not only in education but also across a variety of �elds, and we provide a roadmap for how

to utilize demographic data to obtain such useful information.
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Appendix A Source of Identi�cation

This appendix provide more technical details about the identi�cation of our model. To

understand how our model is identi�ed, we �rst apply the within transformation to equation

(1) in the main text to remove the correlated e�ects. That is, we premultiply it by Qc =

Inc − ιncι
′
nc
/nc, where Inc is the identity matrix of dimension nc, such that

Qcyc = Qc

K∑
k=1

λkWk,cyc + QcXcβ+ Qc

K∑
k=1

Wk,cZcθk + Qcuc

=
K∑
k=1

λkWk,cQcyc + QcXcβ+
K∑
k=1

Wk,cQcZcθk + Qcuc, (A.1)

where the second equality is because Wc is row-normalized and symmetric. Let y∗c = Qcyc,

and de�ne X∗c ,Z
∗
c , and u∗c similarly. Note that the typical element of y∗c is yic − ȳc, where

ȳc = 1
nc

∑nc

i=1 yic (it is same for X∗c ,Z
∗
c , and u∗c). We assume Inc −

∑K
k=1 λkWk,c is invertible

1

so the model is stable and has an equilibrium. Then, the reduced form of equation (A.1) is

written as

y∗c =

(
Inc −

K∑
k=1

λkWk,c

)−1 [
X∗cβ+

K∑
k=1

Wk,cZ
∗
cθk + u∗c

]

=

Inc +
K∑
k=1

λkWk,c +

(
K∑
k=1

λkWk,c

)2

+ ...

[X∗cβ+
K∑
k=1

Wk,cZ
∗
cθk + u∗c

]
.(A.2)

In the sequel, let Sc(k, r) = {i : (hk,ic = r)} for k = 1, ..., K, and r = 1, ..., Rk (i.e. the

index set of students in classroom c whose kth partition variable is r)2 and nc(k, r) = |Sc(k, r)|

where |S| is the cardinality of a set S (so, nc =
∑Rk

r=1 nc(k, r)). Remember hk,ic, de�ned in

the main text, is the kth partition variable which is associated with kth demographic variable

that partitions students in a classroom into Rk groups.

1Note that a su�cient condition for the invertibility is
∑K
k=1 |λk| < 1 since Wk,c are row-normalized.

2In the example considered in the main text, where a classroom c consists of �ve students {s1, s2, s3, s4, s5}
and student s1 is a Hispanic girl; s2 is a Hispanic boy; s3 is an Asian boy; s4 is an Asian girl; and s5 is an Asian
girl, Sc(g, 1) = {s1, s4, s5},Sc(g, 2) = {s2, s3},Sc(e, 1) = {s1, s2}, and Sc(e, 2) = {s3, s4, s5}, where 1 and 2
indicate girl and boy groups, respectively, in gender partition and Hispanic and Asian groups, respectively,
in ethnicity partition.
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First, we examine how group size variation can be used to identify equation (A.2). For

simplicity, we consider the case K = 1. When K = 1, after some matrix algebra, student i's

outcome function (in scalar form) can be written as

yic − ȳc =
(
zic − z̄(1,h1,ic)

c

)′ (β1 − θ
nc(1,h1,ic)−1

1 + λ
nc(1,h1,ic)−1

)
+

1

1 + λ
nc(1,h1,ic)−1

(
uic − ū(1,h1,ic)c

)
︸ ︷︷ ︸

(∗)

+
1

1− λ
[(

d̄(1,h1,ic)
c − d̄c

)
β2 +

(
z̄(1,h1,ic)
c − z̄c

)
(β1 + θ) +

(
ū(1,h1,ic)c − ūc

)]
︸ ︷︷ ︸

(∗∗)

(A.3)

where z̄
(1,h1,ic)
c is the average of zic of the demographic group associated with the �rst (K = 1)

demographic partition to which student i belongs. So zic − z̄
(1,h1,ic)
c represents the di�erence

in attributes between i and her demographic group average, and z̄
(1,h1,ic)
c − z̄c represents the

di�erence in attribute between her demographic group average and the classroom average.

The equation is essentially the same as that derived in Lee (2007), but ours includes the

additional terms in (**), which appear because Rk > 1 for all k (i.e., because each classroom

contains multiple demographic groups within each demographic partition).

Boucher et al. (2014) provide an intuitive explanation about how the structural param-

eters in (*), λ,β, and θ, can be identi�ed based on variation in classroom sizes. For ease

of discussion and without loss of generality, let us assume for now that all peer e�ects are

positive. Since individuals are excluded from their own peer groups (i.e. exclusive averag-

ing), individuals with attributes above the average essentially have a group of peers whose

attributes are below average, which implies a perfect negative correlation between individual

attributes and their mean peer attributes. If endogenous and exogenous peer e�ects exist,

it is clear from equation (1) in the main text that such negative correlation reduces the dis-

persion in outcomes (over the case where peer e�ects are zero). However, the degree of the

smoothing is not constant across demographic groups of di�erent sizes. The smoothing e�ect

is larger in smaller groups since exclusive averaging doesn't greatly e�ect peer means when

group size is large. This is seen in equation (A.3) where the marginal e�ect of zic − z̄
(1,h1,ic)
c
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is reduced by θ (i.e. exogenous peer e�ects) linearly and by λ (i.e. endogenous peer e�ects)

nonlinearly, and the reduction decreases as demographic group size, nc(1, r), increases.

This implies that, as group size varies across classrooms, so does the impact of each

structural parameter on the outcome in the model. Thus, these variations can be used to

separately identify the parameters. Note that the variation in group sizes in our model

is richer than that in the model of Lee (2007). The sizes of multiple demographic groups

within a classroom vary across classrooms, which allows us to use the variation in nc(k, r)

for k = 1, ..., K and r = 1, ..., Rk, not just nc.
3

Another important feature of our model is the additional term (**). Interestingly, the

social e�ects (λ and θ) in this term no longer reduce the dispersion in outcomes, but amplify

it. When there are disparities in attributes across demographic groups, the social e�ects ex-

aggerate the gap. This is intuitive since the social e�ects work primarily within demographic

groups in our model. This gives us an important implication that peer interactions may

equalize students outcomes by improving the performance of low ability students more than

that of high ability students, but it may also increase the gap across di�erent peer groups

when students interact exclusively within their peer groups. Therefore, in this setting, if

there is a heterogeneous social shock that a�ects demographic groups disproportionately (or

if there is a pre-existing gap in performance between groups), peer interaction will exaggerate

the gap.4 This suggests that if a gap exists in average performance for members of di�erent

groups within a partition, and students interact within their group, mere exposure in the

classroom to other groups is not be su�cient to close performance gaps.5

Next, we show how variations in partition structures and groups sizes together yield iden-

ti�cation in our model in general, for which we use the identi�cation results from Bramoullé et

al. (2009). From an instrumental variable perspective, identi�cation of the within-transformed

3In equation (A.3), note that dic is a vector of partition dummies, so dic = d̄
(1,h1,ic)
c when K = 1.

Equation (A.3) implies the coe�cients on the dummies can be identi�ed once λ is identi�ed.
4For example, if the current pandemic has disproportionate e�ects on student outcomes across ethnic

groups, peer interaction within ethnic groups will ampli�es the disparity.
5A simple calculation using equation (A.3) reveals that a group's unit deviation from its classroom average

in academic performance is increased by λ
1−λ percent due to peer e�ects.
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equation (A.1) reduces to whether we can �nd valid instruments for the endogenous regres-

sors {Wk,cy
∗
c}Kk=1. Note from the reduced form equation (A.2) that Wk,cy

∗
c can be written

as

Wk,cy
∗
c =

Wk,c + Wk,c

K∑
k=1

λkWk,c + Wk,c

(
K∑
k=1

λkWk,c

)2

+ ...

[X∗cβ+
K∑
k=1

Wk,cZ
∗
cθk + u∗c

]
(A.4)

For the instrumental variable approach to work, the deterministic parts of {Wk,cy
∗
c}Kk=1,

which simply exclude the error term, u∗c , from (A.4), should not be perfectly collinear with

the exogenous regressors in the model, X∗c and {Wk,cZ
∗
c}Kk=1. Otherwise, identifying instru-

ments for the endogenous terms that satisfy the exogeneity, relevance, and rank conditions

don't exist in the system. Therefore, identi�cation of (A.1) requires the deterministic parts

of {Wk,cy
∗
c}Kk=1 to be linearly independent of X∗c and {Wk,cZ

∗
c}Kk=1 for some c. If it is sat-

is�ed, the elements of the deterministic part of Wk,cy
∗
c that are independent of the existing

regressors can be used as valid instruments for them. This is the insight of Bramoullé et al.

(2009) and others, and we show below that the condition is in general satis�ed in our case if

there is su�cient variation in partition structures and group sizes.

First, observe that Wk,cWl,cZ
∗
c for k, l = 1, ..., K, are elements of the deterministic parts

of {Wk,cy
∗
c}Kk=1, and whose ith element, [Wk,cWl,cZ

∗
c ]i, is given by:

=
1

nc(k, hk,ic)− 1

∑
q∈Sc(k,hk,ic)

q 6=i

 1

nc(l, hl,qc)− 1

∑
j∈Sc(l,hl,qc)

j 6=q

(zjc − z̄c)


=

1

nc(k, hk,ic)− 1

{
Rk∑
r=1

nc ([k, hk,ic] ∩ [l, r])

nc(l, r)− 1

∑
j∈Sc(l,r)

(zjc − z̄c)

− 1

nc(l, hl,ic)− 1
(zic − z̄c)

− 1

nc(l, hl,ic)− 1

∑
j∈Sc(l,hl,ic)

j 6=i

(zjc − z̄c)−
∑

j∈Sc(k,hk,ic)
j 6=i

1

nc(l, hl,jc)− 1
(zjc − z̄c)

}
,

where nc ([k, s] ∩ [l, r]) denotes |Sc(k, s) ∩ Sc(l, r)| (i.e. the number of students in the inter-

section of group s on partition k and group r on partition l). The �rst equality implies that
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the term includes the attributes of student i's peers' peers where direct peers are based on

the kth partition and indirect peers are based on the lth partition, and the peer sums are di-

vided by (one less than) the sizes of the demographic groups associated with them. Note that

[Z∗c ]i = zic− z̄c, [Wl,cZ
∗
c ]i = 1

nc(l,hl,ic)−1
∑

j∈Sc(l,hl,ic)
j 6=i

(zjc − z̄c), and [Wk,cZ
∗
c ]i is similarly given.

Then, from the second equality, it is clear that Wk,cWl,cZ
∗
c for k, l = 1, ..., K includes terms

similar to Z∗c , Wl,cZ
∗
c , and Wk,cZ

∗
c , but they won't be linearly dependent as long as there is

variation in how each partition intersects with the others, i.e. Sc(k, s)∩Sc(l, r) or variation in

group sizes, i.e. nc(k, r).
6 Since the deterministic parts of {Wk,cy

∗
c}Kk=1 include Wk,cWl,cZ

∗
c ,

this ultimately implies that identi�cation of equation (A.1) is possible when such variation

exists. When the model is identi�ed, it is clear that Wk,cWl,cZ
∗
c for l = 1, ..., K can be used

as identifying instruments for Wk,cy
∗
c .
7

The role of variations in group sizes and partition structures in the identi�cation of the

model can be understood intuitively as follows. Consider the case with two partitions, gender

and ethnicity. If peer e�ects work through both gender and ethnic lines, peer e�ects within

girl and boy groups will �rst reduce the dispersion in outcomes within the two gender groups,

but increase the gap between the two. However, peer interaction within groups in the ethnic

partition (ethnic groups) may play against these e�ects, lessening the gender gap within the

ethnic groups but increasing dispersion in outcomes within gender groups by enlarging racial

gap in outcomes there. The size of all of these smoothing and dispersing e�ects and how

one e�ect interplays with the others depend on the sizes of groups and how groups of one

partition intersect with groups of the others.

6Using the second equality, one can easily see that the terms are perfectly linearly dependent if some
partitions completely overlap (e.g. all boys are race 1 and all girls are race 2, so Wg,c = We,c for all c).

7One can easily verify that these instruments satisfy the exogeneity, relevance, and rank conditions for
valid instruments. More formal su�cient identi�cation condition for our model in this regard may be derived
using the identi�cation results for high-order spatial autoregressive models in Lee and Liu (2010).
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Appendix B Simulation Experiments

We conduct two experiments to examine 1) if the NYC elementary school data contains

enough variations in the sizes of demographic groups across classrooms to consistently es-

timate model parameters, and 2) if our model can capture the determinants of friendship

when friendship is formed based on shared demographic characteristics. Speci�cally, in the

�rst experiment, we simulate datasets using the proposed model and the empirical moments

of the sizes of groups in the NYC school data, and investigate if the model parameters are

consistently estimated from the proposed maximum likelihood estimation. The second ex-

periment applies the proposed model to the datasets generated from a standard peer e�ects

model with a single friendship network where the peer network is formed based on some

shared characteristics. We examine if the proposed model can identify the determinants of

the friendship network in such setting.

For the �rst experiment, we create C classrooms with classroom sizes randomly drawn

from the empirical distribution of class sizes in the NYC data. Then, we create three partition

networks by randomly assigning a gender, ethnicity and bus ridership to each student in a

classroom. The three networks represent three distinctive network types in terms of the

number of related groups and the level of variation in their sizes. First, the gender network

(W1,c) includes only two groups, so the size of each gender group in a classroom tends to be

large,8 and it may not vary much across classrooms in part due to the common school practice

that roughly matches the proportions of male and female students. This implies identi�cation

of gender peer e�ects may be challenging. Second, the ethnicity network (W2,c), generated

based on the empirical distributions of the four largest ethnic groups in the NYC data,

contains a moderate number of groups, and their size variations are relatively large in Table

1 in the main text. So, this type of network may not pose the identi�cation di�culty that

the gender network may have. The last network, bus rider network (W3,c) is very sparse

8As discussed in Section 4.2, endogenous and exogenous peer e�ects may be weakly identi�ed when the
average group size is large relative to the number of groups.
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as only about 10% of students are bus riders and there may be several bus routes that

further partition the riders.9 It is well known that this type of network sparsity or exclusion

restrictions help identi�cation of peer e�ects, which is well born out in our simulation results.

Regressors include dummies created from the gender, ethnicity and bus ridership variables,

a continuous variable, zic ∼ N(0, 1), and its interactions with weights matrices for exogenous

peer e�ects. The errors are drawn independently and identically from N(0, 1). With all

variables generated, the outcome variables are generated from the reduced form of equation

(1) in the main text for each classroom. This exercise includes thirteen parameters in total:

three endogenous peer e�ects (λ), three exogenous peer e�ects (θ), and six coe�cients for the

rest of the regressors and the variance of the error (β and σ2). We set λ1 = λ2 = λ3 = 0.1,

and the rest of the parameter values to be one. We simulate 1,000 times for each C =

{50, 100, 500}.

Table B.1: Experiment 1

λ̂1 λ̂2 λ̂3 θ̂1 θ̂2 θ̂3 β̂1 σ̂2

C=50 Bias 0.025 0.008 0.003 -0.043 -0.017 0.001 -0.026 0.012
SD 0.076 0.042 0.048 0.212 0.111 0.198 0.105 0.040

C=100 Bias 0.012 0.004 0.001 -0.025 -0.006 0.002 -0.017 0.005
SD 0.056 0.029 0.030 0.149 0.075 0.091 0.076 0.028

C=500 Bias 0.001 0.000 0.000 -0.001 0.000 0.001 -0.002 0.000
SD 0.016 0.009 0.009 0.045 0.024 0.029 0.023 0.009

Table B.1 reports the bias and standard deviation (SD) of the estimates over 1,000 repli-

cations for each case.10 Overall, both bias and variance of the estimates decrease fast as C

increases, and the bias is considerably smaller than the standard deviation, con�rming that

the empirical distributions of the sizes of groups in the NYC data provide su�cient variations

for the consistent estimation of the model parameters. Particularly, the biases and variances

of λ̂1 and θ̂1 (i.e. gender- endogenous and exogenous peer e�ects) are always larger than that

of the others peer e�ects estimators as we expected before.

9As mentioned in the main text, when constructing bus route or stop network for our empirical application,
those who are not bus riders are ignored, that is, those are isolated from these networks.

10β1 is coe�cient on zic and the results on βi for i = 2, ..., 6 are omitted to save space.
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For the second experiment, we simulate a friendship network, Wc, for each classroom

using a network formation model frequently used in the literature (e.g. Goldsmith-Pinkham

and Imbens, 2013) such that [W∗
c ]ij = w∗ijc where w

∗
ijc = 1 (U c

i (j) > 0) × 1
(
U c
j (i) > 0

)
for

i 6= j and w∗ijc = 0 otherwise. U c
i (j) is the utility for i of forming a link with j and is speci�ed

as U c
i (j) = αG1 (Gic = Gjc) + αE1 (Eic = Ejc) + εijc and Ujc(i) similarly de�ned.11 Gic and

Eic are the gender and ethnicity variables simulated in the �rst experiment, and εijc ∼ iid

N(0, 1). Then, Wc is obtained by row-normalizing W∗
c . The network formation model implies

that there is a higher chance for two students to form a link if they share the same gender or

ethnicity. After including the same set of regressors used in the �rst experiment, the outcome

variable is generated from the reduced form of equation (1) in the main text where λWc now

substitutes for
∑K

k=1 λkWk,c. Then, we apply our partitioned peer e�ect model with three

networks as in the �rst experiment to these data to investigate if the peer e�ects estimates

deliver any information about the determinants of friendship formation.12 We set C = 1, 000,

λ = 0.3, and simulate 1,000 times for each (αG, αE) ∈ {(1, 1), (0.5, 1), (1, 0.5), (0.1, 0.1)} where

we vary the parameter values to change the relative importance of the two factors in network

formation.

Table B.2: Experiment 2

(αG, αE) λ̂1 λ̂2 λ̂3 θ̂1 θ̂2 θ̂3 β̂1 σ̂2

(1,1) Mean 0.066 0.034 -0.003 0.221 0.108 0.003 0.983 1.081
SD 0.019 0.010 0.010 0.037 0.020 0.031 0.006 0.010

(1,0.5) Mean 0.071 0.018 0.002 0.241 0.056 -0.007 0.987 1.095
SD 0.018 0.010 0.011 0.037 0.019 0.030 0.006 0.010

(0.5,1) Mean 0.032 0.041 -0.002 0.132 0.129 -0.004 0.990 1.116
SD 0.019 0.010 0.011 0.038 0.019 0.030 0.006 0.010

(0.1,0.1) Mean 0.011 0.010 -0.003 0.051 0.015 -0.004 0.999 1.225
SD 0.018 0.010 0.011 0.036 0.019 0.029 0.006 0.011

Table B.2 reports the empirical mean and SD of the estimates over 1,000 simulation draws

for each case. Overall, the relative importance of the factors in friendship formation re�ects

11For simplicity, we assume that both students need to agree to form a link.
12Note that the bus ridership variable is not included in the friendship formation model, but the bus

ridership network is included when estimating the outcome model.
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well on the relative sizes of λ̂k and θ̂k. In all cases, gender and ethnicity network e�ects

are estimated to be larger than the bus rider network e�ect on average, which captures the

fact that gender and ethnicity are the determinants of the friendship network, but the bus

ridership is not. Also, gender and ethnicity network e�ects are estimated as small when αG or

αE are small, and vice versa. Proposing a formal test for determinants of network formation

based on peer e�ects estimates from our model in this regard is beyond the scope of this

paper, but it is clear that the peer e�ect estimates of our model may provide important

insights into the channels through which students form friendships.13

13The estimates may better re�ect the data generating process of friendship formation if the magnitudes
of friendship links are allowed to di�er by similarity between students.

40



Appendix C Robustness Checks

C.1 Randomness of classroom assignment

One key assumption for the causal interpretation of educational peer e�ect models is that

classroom assignment is random (e.g., De Giorgi et al., 2010). While we cannot prove this

random assignment, we provide evidence to support this claim for this sample. For each

homophilous peer network we include in our model, we would like to show that classroom

assignment is not a function of the associated variable. To do this, we consider a series of

multinomial logit models of the form:14

P (Classi = c|xikr) = e (αkrc + βkrcxikr) /
C∑
j=1

e (αkrj + βkrjxikr)

We limit the sample for each regression to a single grade (g) in a single school (s) in a single

year (t), which includes 4.44 classrooms on average, and repeat regressions until we cover the

whole sample.15 Classi is a categorical variable for assignment of student i to one of these

classrooms, and xikr is a binary indicator for group r based on demographic characteristic k of

student i that we use as a partition variable in our analysis. For example, if k is the ethnicity

network and r is the Hispanic group, xikr is an indicator of whether student i is Hispanic. We

convert demographic indicators with many sparse categories (i.e. `language spoken at home'

and `bus route') to binary indicators (i.e., `English speaker' and `bus rider,' respectively).

The result is a series of estimates (β̃krc) and t-statistics, capturing the marginal e�ect and

signi�cance of the relevant demographic variable (xikr) on class assignment. Then, for each

school-grade-year we randomly re-assign the students to the classrooms using a uniform

distribution, and re-run the regressions. Using a quantile-quantile plot of the simulated and

actual t-statistics, we compare the distributions of t-statistics. Each dot in the panels of

14The variables and coe�fcients in the equation are subscripted with gst, but it is suppressed for notational
simplicity.

15We exclude school-grades for which there is only one classroom available from this process, as there is
no assignment decision to be made.
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Figures C.1 and C.2 represents a pair of t-statistics (one actual, the other simulated) for

each grade-school-year. Each panel represent a single demographic indicator and contains a

line with a slope of one (a 45 degree line), so deviations in the dot patterns from this line

represent a di�erence in the signi�cance of the non-randomized and randomized regressions,

and (perhaps) a departure from random assignment to classrooms. Figure C.1 contains the

plots for female, `English speaker,' `foreign born' and `bus rider,' while �gure C.2 contains

plots for Hispanic, black, white and Asian. All plots appear to support random assignment

of students to classrooms.
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C.2 Past Performance Network

One concern is that students may interact along performance levels, such that high performing

students interact more with other high performing students (e.g., Carrell et al., 2013). If this

is true and these missing links are associated with our demographic networks, our peer e�ect

estimates across demographic partitions (particularly their rankings) will be biased. We test

the robustness of our estimates to this possibility (i.e., missing network bias) by including a

network based o� lag performance quantile. This network will be treated as a control and

not as a network of interest. We rank students in each classroom based on their previous

year's test scores and then divide them into groups based on quantile. Using these groups,

we construct a past performance network as described in Section 4.1.

One empirical issue is to determine the number of quantiles to form the performance

groups. Figure C.3 shows the log-likelihood values of the models with di�erent number of

quantiles for the past performance network. We can see that in case of reading, using three

quantiles results in the largest likelihood value, while four quantiles results in the largest

value for math. Since we consider the past performance network as a control, we choose the

number of quantiles that most improves model �t. These models are essentially equivalent to

the model (2) and (4) in Table 3 except that they include the addition of a past performance

network.

The results are reported in Table C.1. Notice that networks with the largest estimates in

the baseline model remain among the most in�uential networks here. For math, the Ethnicity

network is the largest in both the baseline and this model. For reading, the top network is

Gender in both models. For math, the Language and then Gender networks are next most

in�uential in the baseline model, although they are superseded here by the Bus networks and

Country of birth. The Bus Stop and Bus Route networks are of opposite sign, suggesting

there may be signi�cant overlap between the groups.

For reading, Ethnicity remains the second most important network. Language was the

third most in�uential network in the baseline model, but here it is superseded by Country of
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Figure C.3: Log-Likelihood Value by the Number of Quantiles for the Past Performance
Network

birth, which now shows a similar estimate (0.057) to Language (0.054). One key di�erence

between this model and the baseline model is that all of the networks now appear important.

Rather than the lag performance network removing all variation, it has helped to highlight

which networks are important, and we see that the primary network for math is Ethnicity,

and for reading it is Gender - consistent with our baseline model.
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Table C.1: Including a Past Performance Network Control

Mathematics Reading

Peer E�ects (λk)
Ethnicity 0.137** (0.008) 0.093** (0.004)
Language 0.046** (0.007) 0.054** (0.003)
Gender 0.063** (0.012) 0.215** (0.007)
Zip Code 0.042** (0.007) 0.050** (0.003)
Bus Route -0.067** (0.009) 0.015** (0.003)
Bus Stop 0.085** (0.010) -0.002 (0.003)
Country 0.075** (0.012) 0.057** (0.004)
Lag Score Qtile 0.452** (0.005) 0.468** (0.004)

Observations (n) 55,598 55,221

C.3 Alternative Speci�cations

Tables C.2-C.4 modify the speci�cation in Table 3 in the main text to see if our main results

are sensitive to di�erent speci�cations.16 The general �nding of this exercise is that the

relative rankings of the peer e�ects tend to be robust, while the magnitudes vary slightly.

For this reason, the baseline model reported in Section 5 and Table 3 in the main text is

our preferred speci�cation. The baseline model provides a clear understanding of the relative

importance of all partitions of interest, and the impact of the characteristics these partitions

represent on elementary school education test scores.

Table C.2 contains the same model as in Table 3 in the main text (equation 2), but

removes the bus networks. The bus network tends to be sparser then the other networks,

and we want to be sure that this sparseness is not corrupting the other estimated peer e�ects.

For mathematics test scores, both the ranking and estimates of the peer e�ects are relatively

unchanged without the bus networks. Only Zip Code increases in both models (although it

is never signi�cant in the reading models), and Ethnicity increases for reading. But these

changes are slight and not meaningful. The increase in Zip Code estimate is consistent with

16Given that Table 3 in the main text showed little impact based on our de�nition of Neighborhood, we
report estimates using zip codes as they are substantially less computationally intensive.
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the idea that the bus networks are small geographic networks and removing them from the

model slightly increases the in�uence of the Zip Code network. Like most large cities, New

York is geographically segregated by ethnicity and income, so it may be surprising that

Ethnicity is not more a�ected by the removal of the bus networks.17

Next, we further explore the primary Language spoken at home and Country of birth

networks. Nearly 65% of our sample speaks English at home, and over 90% of our sample

was born in the US. We remove connections due to these networks in order to test whether

their inclusion is driving our estimates for these networks. Table C.3 shows estimates of

the baseline model with connections for English language and birth in the US removed. We

see that the importance of Ethnicity declines in both models and the network strength for

both primary Language spoken at home and Country of birth increases. For reading, the

increase in the Country of birth network is enough that it becomes statistically signi�cant

(at the 5% level), which was not in the baseline model. In mathematics, primary Language

was already the second most important network, and we see the estimate increase while the

Ethnicity estimate decreases. This suggests that part of what makes the Ethnicity network

so important is shared cultural elements such as language.

Because gender and ethnicity are the most commonly investigated demographic deter-

minants of educational outcomes in the literature, we run the model with just these two

networks for comparison. Table C.4 contains the results with only Gender and Ethnicity

peer networks. In these models Ethnicity peers are important for mathematics scores (0.247)

with Gender being only mildly important (0.055), but not for reading scores where Gender

(0.150) and Ethnicity (0.129) are much more similar in importance. This is consistent with

the �ndings in Table 3 in the main text, but we notice that the inclusion of other networks

such as primary Language spoken at home reduces the e�ect of Ethnicity, but not Gender.

This suggests that Ethnicity is a proxy for some of these other important networks, but

17It is important to note that only about 25% of the sample is assigned a bus route (compared with 10%
for NYC as a whole). So even as we focus more on the bus, these networks still a�ect only a portion of our
sample - whereas all students participate in the other networks.
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Gender is orthogonal to them.

Table C.2: No Bus Networks

Mathematics Reading

Peer E�ects (λk)
Ethnicity 0.221 (0.008) 0.117 (0.009)
Language 0.097 (0.009) 0.052 (0.009)
Gender 0.054 (0.013) 0.150 (0.012)
Zip Code 0.020 (0.009) 0.008 (0.009)
Country 0.008 (0.016) 0.024 (0.017)

Observations (n) 55,598 55,221

About 25% of the sample is assigned a bus, but only a subset of these students share a bus
route or stop with a classmate. We run the baseline model without the bus networks, as
we may be concerned about sparse networks. Models include 20 contextual social e�ects,
constructed using the lag test score, age, age squared, and FRPL status along with each
of the seven networks included in the model, as well as neighborhood and classroom �xed
e�ects. Hispanic is the omitted reference group for ethnicity marginal e�ects.

C.4 Classroom Composition: Di�erences by Borough

The NYC public school system is a large and diverse place containing �ve boroughs each

with their own characteristics. We split our sample by borough in order to explore whether

our estimates change based on context and by how much. Table C.5 report the results

for mathematics and reading respectively when we split our sample by borough. For both

outcomes, the top three e�ects are consistent with the full sample in most splits, but there

is some signi�cant variation in the estimates that is worth unpacking.

Starting with mathematics, we notice that in all models the Ethnicity network remains

the most important, but point estimates range from 0.136 in the Bronx to 0.285 in Queens.

There are likely two causes to this, both of which are tied to the ethnic composition of

the boroughs. The �rst is that the relevance of the Ethnicity network may vary between

ethnic groups. Second, whether a student is participating in a large or small network may

a�ect the importance of the network. We can think of this second mechanism as a question
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Table C.3: Alternate Language and Country Networks

Mathematics Reading

Peer E�ects (λk)
Ethnicity 0.208 (0.008) 0.115 (0.009)
Language 0.125 (0.009) 0.053 (0.010)
Gender 0.054 (0.013) 0.150 (0.012)
Zip Code 0.015 (0.009) 0.004 (0.009)
Bus Route 0.007 (0.012) 0.028 (0.012)
Bus Stop 0.019 (0.013) 0.007 (0.013)
Country 0.017 (0.016) 0.038 (0.017)

Observations (n) 55,598 55,221

Models include 28 contextual social e�ects, constructed using the lag test score, age, age
squared, and FRPL status along with each of the seven networks included in the model, as
well as neighborhood and classroom �xed e�ects. Hispanic is the omitted reference group for
ethnicity marginal e�ects.

Table C.4: Gender and Ethnicity

Mathematics Reading

Peer E�ects (λk)
Ethnicity 0.247 (0.008) 0.129 (0.009)
Gender 0.055 (0.013) 0.150 (0.012)

Observations (n) 55,598 55,221

Models include eight contextual social e�ects, constructed using the lag test score, age, age
squared, and FRPL status along with each of the seven networks included in the model, as
well as neighborhood and classroom �xed e�ects. Hispanic is the omitted reference group for
ethnicity marginal e�ects.
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Table C.5: Sample Partitioned by Borough (Mathematics)

Panel A: Mathematics Bronx Brooklyn Manhattan Queens Staten Island

Peer E�ects (λk)
Ethnicity 0.136 0.199 0.230 0.285 0.158

(0.021) (0.020) (0.025) (0.012) (0.016)
Language 0.081 0.078 -0.002 0.118 0.060

(0.029) (0.021) (0.035) (0.012) (0.019)
Gender 0.019 0.081 0.019 0.029 0.096

(0.035) (0.032) (0.044) (0.021) (0.023)
Census Tract 0.028 0.010 0.013 0.002 0.049

(0.022) (0.019) (0.022) (0.014) (0.019)
Bus Stop 0.107 0.031 -0.013 0.005 0.020

(0.037) (0.038) (0.049) (0.020) (0.020)
Bus Route 0.025 -0.011 0.047 0.010 -0.003

(0.029) (0.031) (0.044) (0.020) (0.018)
Country -0.013 0.041 0.065 -0.006 0.007

(0.042) (0.034) (0.056) (0.021) (0.040)

Observations (n) 6,385 8,908 4,181 19,794 16,330

Panel B: Reading Bronx Brooklyn Manhattan Queens Staten Island

Peer E�ects (λk)
Ethnicity 0.080 0.090 0.120 0.153 0.095

(0.025) (0.022) (0.024) (0.015) (0.017)
Language 0.012 0.060 -0.030 0.071 0.037

(0.034) (0.022) (0.031) (0.013) (0.019)
Gender 0.197 0.107 0.163 0.129 0.171

(0.033) (0.031) (0.035) (0.021) (0.022)
Census Tract 0.025 0.004 0.014 -0.013 0.01989

(0.026) (0.020) (0.020) (0.015) (0.019)
Bus Stop 0.034 0.019 0.024 -0.022 0.028

(0.042) (0.039) (0.046) (0.023) (0.021)
Bus Route 0.044 0.025 0.037 0.043 0.008

(0.036) (0.032) (0.040) (0.022) (0.019)
Country -0.038 -0.036 0.100 0.034 0.069

(0.052) (0.037) (0.052) (0.024) (0.042)

Observations (n) 6,367 8,811 4,177 19,559 16,307

Models include 28 contextual social e�ects, constructed using the lag test score, age, age
squared, and FRPL status along with each of the seven networks included in the model, as
well as neighborhood and classroom �xed e�ects. Hispanic is the omitted reference group for
ethnicity marginal e�ects.
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of the level of diversity in a classroom, and we discuss this mechanism further in Section

6. The second and third most important networks are usually primary Language spoken

at home and Gender, although there is more variation than there was in Ethnicity, and

our estimates may be less precise due to smaller samples in these splits. Turning to the

results of each borough, Manhattan is the smallest borough, and only the ethnicity network

is signi�cant for mathematics. In the other boroughs, gender is the second most important

network for Brooklyn and Staten Island, but it is insigni�cant for Queens and the Bronx.

Language is the second most important network in Queens, and the third most important

in the Bronx, Brooklyn, and Staten Island. The estimate in Queens is large (0.118), over

double the estimate for the full model. Queens is also the only borough in which English is

not the primary Language for most students (48%), although it is still the modal language.

In the Bronx, it is notable that the second most important network is the Bus Stop, and

Neighborhood is signi�cant (at least at the 10% level) for the Bronx, Brooklyn, and Staten

Island. These Neighborhood estimates may suggest di�erences in the role Neighborhood

plays in di�erent boroughs.

For reading, we notice that Gender is the most important network in all but one borough,

and Ethnicity is the second most important network for all but one borough. The exception

is Queens in which Gender and Ethnicity are swapped, but still remain the top two networks.

This again re�ects our results in the full model, but there is interesting variation in estimates

to note. First, Gender varies greatly from the Bronx (0.197) to Brooklyn (0.107). With

the exception of Brooklyn, we see a pattern that as the strength of the Ethnicity network

increases, the Gender network decreases. This could suggest that the Ethnicity and Gender

networks act as substitutes. A similar pattern occurred for mathematics as well, further

strengthening this possibility. We will look more at this in the next section, where we dive

further into the Ethnicity network. We should also note the results of the bus networks.

For Queens, the Bus Route is the fourth most important network, and it has a sizable e�ect

(0.043). The Bronx, Brooklyn, and Manhattan all have estimates of similar magnitude, but
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the results are noisy and not statistically signi�cant. This may be due to low power, as these

are the smallest boroughs. It is striking that Staten Island has such a low (and insigni�cant)

estimate - even as bus ridership is most common here. This may indicate other factors around

how these networks operate. In Staten Island, bus routes may be less tied to neighborhood

than the rest of NYC, as the distances buses travel is further in Staten Island than in other

boroughs. This may point to the relevant mechanism not being time spent on the bus, but

rather the students who live most nearby - a micro neighborhood.
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Appendix D Estimation procedure

Our empirical model is given by

yct =
K∑
k=1

λkWk,ctyct + Xctβ+
K∑
k=1

Wk,ctZctθk + yc,t−1γ + δct · ιnct + uct (D.1)

In order to apply a quasi-MLE, we assume that each element in uct is iid(0, σ2). To remove the

time varying classroom �xed e�ects, following Lee et al. (2010), we consider an transformation

that eliminates the classroom �xed e�ects while maintaining interdependency between the

errors. Let the orthonormal matrix of the with transformation matrix Qct = Inct− ιnctι
′
nct
/nct

be [Pct, ιnct/
√
nct]. The columns in Pct are eigenvectors of Qct corresponding to the eigenvalue

one, such that P
′
ctιnct = 0, P

′
ctPct = Inct−1 and PctP

′
ct = Qct. Then, premultiplying equation

(D.1) by P
′
ct yields

yct =
K∑
k=1

λkWk,ctyct + Xctβ+
K∑
k=1

Wk,ctZctθk + yc,t−1γ + uct (D.2)

where yct = P
′
ctyct and Xct,yc,t−1,Zct, and uct are similarly de�ned, and Wk,ct = P

′
ctWk,ctPct

for k = 1, ..., K. In equation (D.2), we use the fact P
′
ctWk,ct = Wk,ctP

′
ct.

Note that uct ∼ (0, σ2Inct−1). Then, the likelihood function for (D.2) is given by

lnLct(Λ,B, σ
2) =− nct − 1

2
ln(2πσ2) + ln |Sct(Λ)| − ε̄ct(ψ)

′
ε̄ct(ψ)

2σ2
(D.3)

where Λ = (λ1, ..., λK)
′
, B = (β

′
,Θ

′
,γ

′
)
′
with Θ = (θ

′
1, ..., θ

′
K)

′
, Sct(Λ) = Inct−

∑K
k=1 λkWk,ct,

and ε̄ct(ψ) = yct −
∑K

k=1 λkWk,ctyct −Xctβ−
∑K

k=1 Wk,ctZctθk − yc,t−1γ with ψ = (Λ,B).

If no one is isolated from any of the networks, following Lee et al. (2010), (D.3) can be

written without Pst as

lnLct(Λ,B, σ
2) =− nct − 1

2
ln(2πσ2)− ln

(
1−

K∑
k=1

λk

)
+ ln |Sct(Λ)| − εct(ψ)

′ ·Qct · εct(ψ)

2σ2

54



(D.4)

where Sct(Λ) = Inct−
∑K

k=1 λkWk,ct, and εct(ψ) = yct−
∑K

k=1 λkWk,ctyct−Xctβ−
∑K

k=1 Wk,ctZctθk−

yc,t−1γ. The parameter space for Λ needs to be restricted to ensure that |Sct(Λ)| and(
1−

∑K
k=1 λk

)
are strictly positive for all c and t, so that the likelihood is well de�ned.

|Sct(Λ)| will be strictly positive when
∑K

k=1 |λk| < 1 since our network matrices are row-

normalized.

The log-likelihood function for entire sample is simply lnL(Λ,B, σ2) =
∑C

c=1

∑T
t=1 lnLct(Λ,B, σ

2).

To simplify the estimation, we concentrate out B and σ2 in (D.4) using the fact that the

QMLE of B and σ2 given Λ are: B̂(Λ) = Φ−1Ψ(Λ) where Φ =
∑C

c=1

∑T
t=1 χ

′
ct · Qct · χct

and Ψ(Λ) =
∑C

c=1

∑T
t=1 χ

′
ct · Qct · µct(Λ) with χct = [Xct,W1,ctZct, ...,WK,ctZct,yc,t−1] and

µct(Λ) = yct −
∑K

k=1 λkWk,ctyct, and

σ̂2(Λ) =
Υ(Λ)−Ψ(Λ)

′
Φ−1Ψ(Λ)∑C

c=1

∑T
t=1(nct − 1)

. (D.5)

where Υ(Λ) =
∑C

c=1

∑T
t=1 µct(Λ)

′ ·Qct · µct(Λ).

Then, the concentrated log-likelihood function of Λ is

lnL(Λ) =
C∑
c=1

T∑
t=1

−nct − 1

2
[ln(2π)+1]−ln

(
1−

K∑
k=1

λk

)
+ln |Sct(Λ)|−nct − 1

2
ln σ̂2(Λ) (D.6)

The QMLE of Λ, Λ̂, is the maximizer of (D.6), and the QMLE of B and σ2 are B̂(Λ̂) and

σ̂2(Λ̂), respectively.
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